A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.
نویسندگان
چکیده
Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.
منابع مشابه
G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.
G protein-gated inwardly rectifying potassium channels (GIRKs) are a family of homo- and hetero-oligomeric K(+) channels composed of different subunits (GIRK1 to 4 in mammals). GIRK4 and GIRK1 are found mainly in the atrium, whereas neuronal cells predominantly express the GIRK1, GIRK2, and GIRK3 isoforms. When activated, GIRK channels slow the firing rate of atrial myocytes and neuronal cells....
متن کاملActivation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein bg subunits
G protein-coupled inwardly rectifying potassium (GIRK) channels can be activated or inhibited by different classes of receptors, suggesting a role for G proteins in determining signaling specificity. Because G protein bg subunits containing either b1 or b2 with multiple Gg subunits activate GIRK channels, we hypothesized that specificity might be imparted by b3, b4, or b5 subunits. We used a tr...
متن کاملInhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Different Classes of Antidepressants
Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been...
متن کاملInhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine.
Paroxetine is commonly used as a selective serotonin reuptake inhibitor for the treatment of depression and other psychiatric disorders. However, the molecular mechanisms of the paroxetine effects have not yet been sufficiently clarified. Using Xenopus oocyte expression assays, we investigated the effects of paroxetine on G protein-activated inwardly rectifying K+ (GIRK) channels, which play an...
متن کاملConstitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.
A diversity of ion channels contributes to the active properties of neuronal dendrites. From the apical dendrites of hippocampal CA1 pyramidal neurons, we recorded inwardly rectifying K+ channels with a single-channel conductance of 33 pS. The inwardly rectifying K+ channels were constitutively active at the resting membrane potential. The amount of constitutive channel activity was significant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 3 شماره
صفحات -
تاریخ انتشار 1996